skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Si photonics has made rapid progress in research and commercialization in the past two decades. While it started with electronic–photonic integration on Si to overcome the interconnect bottleneck in data communications, Si photonics has now greatly expanded into optical sensing, light detection and ranging (LiDAR), optical computing, and microwave/RF photonics applications. From an applied physics point of view, this perspective discusses novel materials and integration schemes of active Si photonics devices for a broad range of applications in data communications, spectrally extended complementary metal–oxide–semiconductor (CMOS) image sensing, as well as 3D imaging for LiDAR systems. We also present a brief outlook of future synergy between Si photonic integrated circuits and Si CMOS image sensors toward ultrahigh capacity optical I/O, ultrafast imaging systems, and ultrahigh sensitivity lab-on-chip molecular biosensing. 
    more » « less
    Free, publicly-accessible full text available August 14, 2026
  2. Abstract We present a catalog of 8440 candidate very metal-poor (VMP; [Fe/H] ≤ −2.0) main-sequence turn-off (MSTO) and red giant stars in the Milky Way, identified from low-resolution spectra in LAMOST DR10. More than 7000 of these candidates are brighter thanG ∼ 16, making them excellent targets for high-resolution spectroscopic follow-up with 4–10 m class telescopes. Unlike most previous studies, we employed an empirical calibration to estimate metallicities from the equivalent widths of the calcium triplet lines, taking advantage of the high signal-to-noise ratio in the red arm of LAMOST spectra. We further refined this calibration to improve its reliability for more distant stars. This method enables robust identification of VMP candidates with metallicities as low as [Fe/H] = −4.0 among both MSTO and red giant stars. Comparisons with metal-poor samples from other spectroscopic surveys and high-resolution follow-up observations confirm the accuracy of our estimates, showing a typical median offset of ∼0.1 dex and a standard deviation of ∼0.2 dex. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available June 20, 2026
  4. Free, publicly-accessible full text available July 1, 2026
  5. Free, publicly-accessible full text available June 22, 2026
  6. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a powerful technique for elemental compositional analysis and depth profiling of materials. However, it encounters the problem of matrix effects that hinder its application. In this work, we introduce a pioneering ToF-SIMS calibration method tailored for SixGeySnz ternary alloys. SixGe1-x and Ge1-zSnz binary alloys with known compositions are used as calibration reference samples. Through a systematic SIMS quantification study of SiGe and GeSn binary alloys, we unveil a linear correlation between secondary ion intensity ratio and composition ratio for both SiGe and GeSn binary alloys, effectively mitigating the matrix effects. Extracted relative sensitivity factor (RSF) value from SixGe1-x (0.07<0.83) and Ge1-zSnz (0.066<0.183) binary alloys are subsequently applied to those of SixGeySnz (0.011<0.113, 0.863<0.935 and 0.023<0.103) ternary alloys for elemental compositions quantification. These values are cross-checked by Atom Probe Tomography (APT) analysis, an indication of the great accuracy and reliability of as-developed ToF-SIMS calibration process. The proposed method and its reference sample selection strategy in this work provide a low-cost as well as simple-to-follow calibration route for SiGeSn composition analysis, thus driving the development of next-generation multifunctional SiGeSn-related semiconductor devices. 
    more » « less
  7. Abstract The stellar atmospheric parameters and physical properties of stars in the Kepler Input Catalog (KIC) are of great significance for the study of exoplanets, stellar activity, and asteroseismology. However, despite extensive effort over the past decades, accurate spectroscopic estimates of these parameters are available for only about half of the stars in the full KIC. In our work, by training relationships between photometric colors and spectroscopic stellar parameters from Gaia DR3, the Kepler-INT Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10, and Galactic Evolution Experiment at Apache Point Observatory DR17, we have obtained atmospheric parameter estimates for over 195,000 stars, accounting for 97% of the total sample of KIC stars. We obtain 1σuncertainties of 0.1 dex on metallicity [Fe/H], 100 K on effective temperatureTeff, and 0.2 dex on surface gravity logg. In addition, based on these atmospheric parameters, we estimated the ages, masses, radii, and surface gravities of these stars using the commonly adopted isochrone-fitting approach. External comparisons indicate that the resulting precision for turnoff stars is 20% in age; for dwarf stars, it is 0.07Min mass, 0.05Rin radius, and 0.12 dex in surface gravity; and for giant stars, it is 0.14Min mass, 0.73Rin radius, and 0.11 dex in surface gravity. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  8. Abstract We present a pioneering achievement in the high-precision photometric calibration of CMOS-based photometry, by application of the Gaia Blue Photometer or Red Photometer (XP) spectra–based synthetic photometry method to the mini-SiTian array (MST) photometry. Through 79 repeated observations of thef02field on the night, we find good internal consistency in the calibrated MSTGMST-band magnitudes for relatively bright stars, with a precision of about 4 mmag forGMST ∼ 13. Results from more than 30 different nights (over 3100 observations) further confirm this internal consistency, indicating that the 4 mmag precision is stable and achievable over timescales of months. An independent external validation using spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10 and high-precision photometric data using CCDs from Gaia DR3 reveals a zero-point consistency better than 1 mmag. Our results clearly demonstrate that CMOS photometry is on par with CCD photometry for high-precision results, highlighting the significant capabilities of CMOS cameras in astronomical observations, especially for large-scale telescope survey arrays. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026